- input variables
- hidden variables
- output variables
The hidden variables are essential for the machine learning. They represent the state variables of the world that are not directly visible to the agent. Yet they do affect the state of the world.
Let us forget for now the hidden variables though, and introduce a simple Perkun code with one input variable and one output variable:
values
{
value false, true;
value move, do_nothing;
}
variables
{
input variable what_I_can_see:{false, true};
output variable action:{move, do_nothing};
}
payoff {}
model {}
As you can see the variables section contains now two variables:
- what_I_can_see
- action
Try using the command "cout << variables << eol;":
values
{
value false, true;
value move, do_nothing;
}
variables
{
input variable what_I_can_see:{false, true};
output variable action:{move, do_nothing};
}
payoff {}
model {}
cout << variables << eol;
When you put the above text in a file and call Perkun it will respond:
# variables
input variable what_I_can_see:{false,true};
output variable action:{move,do_nothing};
By the way you have learned another command. You know currently:
- cout << values << eol;
- cout << variables << eol;
No comments:
Post a Comment